# Sonochemical Synthesis of Ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ Nanocomposites and Their Lithium Storage Properties 

Hui Qiao, Jing Li, Jiapeng Fu, Dnt Kumar, Qufu Wei, ${ }^{*}$ Yibing Cai, and Fenglin Huang*

Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China


#### Abstract

In this study, we successfully prepare $\mathrm{SnO}_{2}$ nanoparticles inside the pore channels of CMK-3 ordered mesoporous carbon via sonochemical method. The content of $\mathrm{SnO}_{2}$ is $17 \mathrm{wt} \%$ calculated according to the energy-dispersive X-ray spectroscopy (EDS) result. CMK-3 with 17 wt \% loading of $\mathrm{SnO}_{2}$ nanoparticles has a large specific surface area and pore volume. Electrochemical performance demonstrates that the ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites electrode possesses higher reversible capacity and cycling stability than that of original CMK-3 electrode. Moreover, the ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites electrode also exhibits high capacity  at higher charge/discharge rate. The improved electrochemical performance is attributed to the nanometer-sized $\mathrm{SnO}_{2}$ formed inside CMK-3 and the large surface area of the mesopores ( 3.4 nm ) in which the $\mathrm{SnO}_{2}$ nanoparticles are formed.


KEYWORDS: sonochemical method, ordered $\mathrm{SnO}_{2}$ /CMK-3, nanocomposites, anode, lithium-ion batteries

Carbonaceous material is a major material for the negative electrode in the rechargeable lithium battery because it exhibits both higher specific capacity, long cycle life, and no memory effect. ${ }^{1-4}$ The carbonaceous material electrodes have several problems hinder practical application in rechargeable lithium batteries: ${ }^{5-7}$ (1) a high irreversible specific capacity; (2) poor cycling performance; (3) too low an intercalating potential, which is closer to or exceeds 0 V .

Recently, much attention has been focused on the ordered mesoporous carbons (CMK-3) anode material, which is a silicatemplated mesoporous carbon with uniform mesopores and a large surface area. ${ }^{8-11}$ The ordered mesochannel and the large surface area of CMK-3 shorten the distance of Li-ion diffusing and its high conductivity is in favor of transmitting the electrons. ${ }^{8}$ Zhou et al. ${ }^{8}$ reported that the first discharge capacity of the ordered mesoporous carbon material was $3100 \mathrm{mAh} \cdot \mathrm{g}^{-1}$, which was eight times higher than the theoretical value of $\mathrm{LiC}_{6}$. However, the initial Coulombic efficiency was only about $34 \%$. The irreversible capacity was almost $2000 \mathrm{~mA} \mathrm{~h} \mathrm{~g}^{-1}$, which is attributed to the formation of SEI films on the large surface area. Moreover, the material showed unsatisfactory capacity retention with cycling.
$\mathrm{SnO}_{2}$ has attracted much attention, as it offers a promising alternative to carbon based anode materials in lithium-ion batteries. This is due to its large specific charge capacity. ${ }^{12-17}$ However, the practical implementation of $\mathrm{SnO}_{2}$ is hampered by its poor cycling stability arising from the large specific volume change (about $358 \%$ ) in repetitive charging and discharging of the battery, which causes mechanical failure and loss of electrical contact at the anode. ${ }^{18,19}$

Sonochemical method was a useful technique for rapidly synthesizing novel materials with unusual properties. ${ }^{20-24}$ The chemical effects of ultrasound were due to acoustic cavitation phenomena that cause the formation, growth, and collapse of bubbles in a liquid. The acoustic cavitations produce reactive radicals from water or other radical sources in aqueous solution. These reactive radicals with extremely high temperature, pressure, and cooling rates confer unique properties on sonicated solutions, and reduce metal ions to metal or metal oxide nanoparticles. Sonochemical methods have been employed successfully in preparing mesoporous metal oxides ${ }^{25,26}$ and mesoporous composites. ${ }^{27-29}$

In this study, we prepared $\mathrm{SnO}_{2}$ nanoparticles inside the pore channels of ordered mesoporous carbon CMK-3 (ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites) via sonochemical method. Electrochemical performance demonstrated that the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites electrode exhibited a large initial discharge capacity of $690 \mathrm{~mA} \mathrm{~h} \mathrm{~g}{ }^{-1}$ and excellent cycling performance, the reversible capacity of 546 mA h g -1 was retained after 35 cycles, much higher than that of original CMK-3 electrode ( 234 mA h $\mathrm{g}^{-1}$ ). Furthermore, the ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites electrode also exhibited high capacity at higher charge/discharge rate, suggesting its excellent rate capability.

The diffraction peaks of [100], [110], and [200] in the hexagonal structure can be observed in the small-angle X-ray diffraction (XRD) pattern shown in Figure 1a, which can be indexed to the typical of ordered mesoporous carbon. The three peaks were detected both in ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites in the

[^0]Accepted: August 23, 2011
Published: August 23, 2011


Figure 1. (a) Small-angle and (b) wide-angle XRD patterns of the CMK-3 and ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites samples.


Figure 2. EDS spectrum of the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites sample.
small-angle XRD. The two broad diffraction peaks of [002] and [100] of the graphite structure can also be observed in the


Figure 3. XPS spectra of (a) survey and (b) Sn 3 d of the ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites sample.
wide-angle XRD pattern of CMK-3 shown in Figure 1b. These broad peaks indicated that CMK-3 includes very small amounts of stacked crystalline graphite phase. The wide-angle XRD pattern of ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites can be well indexed to the tetragonal structure of $\mathrm{SnO}_{2}$ (JCPDS, No. 41-1445). Energy-dispersive spectroscopy (EDS) measurement results in Figure 2 revealed the presence of $\mathrm{Sn}, \mathrm{O}$, and C elements in the ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites sample, which shows the composition of $\mathrm{SnO}_{2}$ in the composite. The EDS measurement illustrated that there was about 17 wt \% of $\mathrm{SnO}_{2}$ inside CMK-3.

X-ray photoelectron spectroscopy was used to investigate the surface chemical composition of ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites. XPS survey spectrum of ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites confirmed that the sample contained only Sn , O and C elements (Figure 3a). And binding energies for $\mathrm{Sn} 3 \mathrm{~d}_{5 / 2}$, O 1s, and C 1s were $485.4,531.0$, and 284.6 eV , respectively. XPS signals of Sn 3 d were observed at binding energies at around $487.8\left(\mathrm{Sn} \mathrm{3d} \mathrm{~d}_{5 / 2}\right)$ and $496.2 \mathrm{eV}\left(\mathrm{Sn} \mathrm{3d} \mathrm{~d}_{3 / 2}\right)$ (Figure 3b). Quantification of the XPS peak areas given that the surface ratio of $\mathrm{Sn} / \mathrm{O}$ in the sample was about 0.54 , which was very close to the


Figure 4. (a) Nitrogen adsorption-desorption isotherms, (b) pore size distribution curve of the CMK-3 and ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites samples.

Table 1. Surface Parameters of the CMK-3 and Ordered $\mathrm{SnO}_{2} /$ CMK-3 Nanocomposites Samples

| sample | BET surface area <br> $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$ | BJH pore volume <br> $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$ | pore size <br> $(\mathrm{nm})$ |
| :--- | :---: | :---: | :---: |
| CMK-3 | 956.7 | 1.09 | 3.9 |
| $\mathrm{SnO}_{2} /$ CMK-3 | 648.8 | 0.54 | 3.4 |

chemical stoichiometry of $\mathrm{Sn} / \mathrm{O}$ in the tin dioxides. Therefore, we concluded that the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites consisted of $\mathrm{SnO}_{2}$ and C on the basis of XRD, EDS, and XPS results.

A nitrogen isothermal adsorption technique was employed in order to investigate the ultrasonic irradiation effect on the pore structure as well as determining the location of $\mathrm{SnO}_{2}$ in the CMK-3 host. Figure 4 shows the nitrogen adsorption-desorption isotherms and pore size distribution curves of the CMK-3 and ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites samples. The nitrogen adsorption-desorption isotherms shows that all samples were found to be of type IV isotherm curves with a marked leap in the adsorption at a relative pressure $P / P_{0}$ of 0.5 (Figure 4a), which was typical characteristics of mesoporous materials. The


Figure 5. SEM image of the ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites sample.

Brunauer-Emmett-Teller (BET) specific surface area, pore volumes, and mean pore diameters of CMK-3 and ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites are summarized in Table 1. As indicated in Table 1, the surface area was found to decrease significantly from $956.7 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ for CMK-3 to $648.8 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ for ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites, and the average pore size was about 3.9 nm for CMK-3 and 3.4 nm for ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites (Figure 4b). Pore-filling would significantly reduce the surface area and pore size, ${ }^{30,31}$ so we assumed that $\mathrm{SnO}_{2}$ nanoparticles were formed inside the pore channels of CMK-3 for ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites.

Figure 5 shows SEM image of the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites sample. From Figure 5, we can see that the $\mathrm{SnO}_{2}$ nanoparticles were about 3 nm in diameter. TEM images were conducted to further confirm the existence of $\mathrm{SnO}_{2}$ nanoparticles inside CMK-3. It is possible to discern directly the existence of $\mathrm{SnO}_{2}$ nanoparticles in the channels of the CMK-3 for the ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites sample (Figure 6b) comparing with the original CMK-3 (Figure 6a). They were not very distinct, probably because of the weak contrast between the CMK-3 frameworks. ${ }^{30}$ The uniform size of $\mathrm{SnO}_{2}$ nanoparticles was about 3 nm , and no bulk aggregation of nanoparticles was observed on the outer surface. On the basis of the analysis above, we concluded that the $\mathrm{SnO}_{2}$ nanoparticles were incorporated into CMK-3 pore channels.

Electrochemical performance demonstrated that the initial charge and discharge capacity of ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites electrode (CMK-3 with 17 wt \% loading of $\mathrm{SnO}_{2}$ nanoparticles) were 1913 and $690 \mathrm{mAh} \cdot \mathrm{g}^{-1}$ at a $\mathrm{C} / 10$ charge/ discharge rate (Figure 7a), respectively. The discharge capacity was much higher than that of CMK-3 electrode ( $449 \mathrm{mAh} \cdot \mathrm{g}^{-1}$ ). The irreversible capacity ( $1223 \mathrm{~mA} \mathrm{~h} \mathrm{~g}{ }^{-1}$ ) in the first cycle may be caused by the decomposition of the electrolyte on the surface of the active materials to form a passivation layer on the electrode (SEI film). Although there was obvious capacity loss in the initial few cycles, no significant capacity decay can be observed after five cycles. The specific capacity after 35 cycles for ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites electrode was $546 \mathrm{~mA} \mathrm{~h} \mathrm{~g}^{-1}$ (Figure 7b). This value was much higher than that of CMK-3 electrode ( $234 \mathrm{~mA} \mathrm{~h} \mathrm{~g}{ }^{-1}$ ). The ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites electrode also exhibited high capacity at higher charge/discharge


Figure 6. TEM images of the (a) CMK-3 and (b) ordered $\mathrm{SnO}_{2} / \mathrm{CMK}$ 3 nanocomposites samples.
rate. The discharge specific capacities of 629,543 , and $439 \mathrm{~mA} \mathrm{~h} \mathrm{~g}^{-1}$ are obtained at $C / 5, C / 2$, and $1 C$ rates (Figure 8 ), respectively. There were several reasons for the improvement of electrochemical performance of ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites electrode. First, the electrode made of nanometer-sized $\mathrm{SnO}_{2}$ formed inside CMK-3 ordered mesoporous carbon offered the possibility of combining good electronic conductivity of the carbon matrix and the high Li storage of $\mathrm{SnO}_{2}$ into one incorporated entity. Second, the carbon framework hindered the aggregation of $\mathrm{SnO}_{2}$ nanoparticles and provided enough space to buffer the volume changes during the lithium insertion and extraction reactions in $\mathrm{SnO}_{2} \cdot{ }^{32,33}$ Finally, porous structures also have large surface areas, which permit high lithium-ion flux across the interface, reduce lithium-ion diffusion distance, and facilitate electron transfer to the current collector (copper foil) through the mesoporous structure.

In summary, we prepared $\mathrm{SnO}_{2}$ nanoparticles inside the pore channels of ordered mesoporous carbon CMK-3 via sonochemical method. CMK-3 with $17 \mathrm{wt} \%$ loading of $\mathrm{SnO}_{2}$ nanoparticles had a large specific surface area and pore volume. Electrochemical performance demonstrated that the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites electrode possessed higher reversible capacity and cycling stability than that of original CMK-3 electrode. Moreover, the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites electrode also


Figure 7. (a) Initial discharge-charge curves, (b) cyclic performance of the CMK-3 and ordered $\mathrm{SnO}_{2} /$ CMK- 3 nanocomposites electrodes at a C/10 charge/discharge rate.


Figure 8. Rate capability of the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites electrode.
exhibited high capacity at higher charge/discharge rate. The excellent electrochemical performances make the ordered $\mathrm{SnO}_{2} / \mathrm{CMK}-3$ nanocomposites a promising anode material for high-power
lithium-ion batteries. In the future, we will synthesize Sn nanoparticles inside the pore channels of ordered mesoporous carbon CMK-3 as a new promising anode material for high-power lithium-ion batteries.

## ■ EXPERIMENTAL SECTION

Synthesis. The synthesis process of ordered mesoporous carbon is similar to that described by Ryoo. ${ }^{34}$ Before synthesizing $\mathrm{SnO}_{2}$ nanoparticles inside CMK-3 by means of ultrasonic irradiation, surface modification of CMK-3 (hydrophilic) was performed in the following way: Ordered mesoporous carbon CMK-3 was treated with $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $80^{\circ} \mathrm{C}$ for 3 h , washed with distilled water, and dried at $80^{\circ} \mathrm{C}$. This sample was denoted as m-CMK-3. Further, 0.2 g of m-CMK-3 was dispersed into an aqueous solution of $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{M})$. After 3 h , the mixture was subjected to ultrasonic irradiation at room temperature. During irradiation, water flow was utilized to cool the glass vessel in the bath. After 2 h of irradiation, the precipitate was washed thoroughly with distilled water, and then dried at $120^{\circ} \mathrm{C}$ for 12 h in a vacuum oven. The sample prepared was referred to ordered $\mathrm{SnO}_{2} /$ CMK-3 nanocomposites.

Characterization. X-ray diffraction patterns of the products were recorded on a X-ray diffractometer (MAC Science Co. Ltd. MXP 18 AHF) with monochromatized $\mathrm{Cu} \mathrm{K} \alpha$ radiation ( $\lambda=1.5406 \AA$ ). XPS measurements were performed in a VG Scientific ESCALAB Mark II spectrometer equipped with two ultrahighvacuum (UHV) chambers. Transmission electron microscopy (TEM) was performed on a transmission electron microscopy (Philip CM-120) at an accelerating voltage of 120 KV . The nitrogen adsorption and desorption isotherms were measured using Micrometrics ASAP2010 system.

Electrochemical Measurement. The working electrodes were prepared by mixing $80 \%$ ordered $\mathrm{SnO}_{2}$ /CMK-3 nanocomposites, $10 \%$ acetylene black, and $10 \%$ poly(tetrafluoroethylene) by weight with 2 -propanol to form an paste. The paste was then roll-pressed into ca. 0.1 mm thick film and finally fixed onto a nickel net. The testing cells had a typical threeelectrode construction using lithium foils as both counter electrodes and reference electrodes, and $1 \mathrm{M} \mathrm{LiPF}_{6}$ dissolved in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylene methyl carbonate (EMC) (1:1:1, $\mathrm{v} / \mathrm{v} / \mathrm{v}$ ) as the electrolyte. The cells were assembled in an argon-filled glovebox.

## ■ AUTHOR INFORMATION

## Corresponding Author

*E-mail: qfwei@jiangnan.edu.cn (Q.W.); flh@jiangnan.edu.cn (F.H.). Tel/Fax: +86-510-8591 2009.

## - ACKNOWLEDGMENT

This work was financially supported by the Fundamental Research Funds for the Central Universities (JUSRP11102 and JUSRP20903), the National Natural Science Foundation of China (51006046), the Natural Science Fundation of Jiangsu Province (BK2010140), the Youth Science Foundation of Jiangnan University (2009LQN01), the Open Project Program of Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, China (KLET0908), and the Research Fund for the Doctoral Program of Higher Education of China (200802951011 and 20090093110004).

## - REFERENCES

(1) Eom, J. Y.; Kwon, H. S. ACS Appl. Mater. Interfaces 2011, 3, 1015-1021.
(2) Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; Hinuma, Y.; Meng, Y. S.; Van der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G. J. Phys. Chem. Lett. 2010, 1, 1176-1180.
(3) Wu, P.; Du, N.; Zhang, H.; Zhai, C. S.; Yang, D. R. ACS Appl. Mat. Interfaces 2011, 3, 1946-1952.
(4) Camean, I.; Garcia, A. B. J. Power Sources 2011, 196, 4816-4820.
(5) Fujimoto, H.; Tokumitsu, K.; Mabuchi, A.; Chinnasamy, N.; Kasuh, T. J. Power Sources 2010, 195, 7452-7456.
(6) Li, Y. G.; Tan, B.; Wu, Y. Y. Nano Lett. 2008, 8, 265-270.
(7) Li, J. X.; Zhao, Y.; Guan, L. H. Electrochem. Commun. 2010, 12, 592-595.
(8) Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I.; Ichihara, M. Adv. Mater. 2003, 15, 2107-2111.
(9) Zhang, H. J.; Tao, H. H.; Jiang, Y.; Jiao, Z.; Wu, M. H.; Zhao, B. J. Power Sources 2010, 195, 2950-2955.
(10) Cheng, M. Y.; Hwang, B. J. J. Power Sources 2010, 195, 49774983.
(11) Nagao, M.; Otani, M.; Tomita, H.; Kanzaki, S.; Yamada, A.; Kanno, R. J. Power Sources 2011, 196, 4741-4746.
(12) Yin, X. M.; Chen, L. B.; Li, C. C.; Hao, Q. Y.; Liu, S. A.; Li, Q. H.; Zhang, E. D.; Wang, T.H. Electrochim. Acta 2011, 56, 2358-2363.
(13) Wu, F. D.; Wu, M. H.; Wang, Y. Electrochem. Commun. 2011, 13, 433-436.
(14) Li, L. M.; Yin, X. M.; Liu, S. A.; Wang, Y. G.; Chen, L. B.; Wang, T. H. Electrochem. Commun. 2010, 12, 1383-1386.
(15) Wang, C. M.; Xu, W.; Liu, J.; Zhang, J. G.; Saraf, L. V.; Arey, B. W.; Choi, D. W.; Yang, Z. G.; Xiao, J.; Thevuthasan, S.; Baer, D. R. Nano Lett. 2011, 11, 1874-1880.
(16) Li, J. X.; Zhao, Y.; Wang, N.; Guan, L. H. Chem. Commun. 2011, 47, 5238-5240.
(17) Cui, L. F.; Shen, J. A.; Cheng, F. Y.; Tao, Z. L.; Chen, J. J. Power Sources 2011, 196, 2195-2201.
(18) Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Adv. Mater. 2006, 18, 2325-2329.
(19) Wang, Y.; Su, F. B.; Lee, J. Y.; Zhao, X. S. Chem. Mater. 2006, 18, 1347-1353.
(20) Luo, Q. P.; Lei, B. X.; Yu, X. Y.; Kuang, D. B.; Su, C. Y. J. Mater. Chem. 2011, 21, 8709-8714.
(21) Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Chem. Mater. 2010, 22, 6310-6318.
(22) Mukherjee, S.; Das, D.; Chakrabarti, P. J. Phys. Chem. C 2010, 114, 14763-14771.
(23) Zhang, Y.; Hu, C. G.; Zheng, C. H.; Xi, Y.; Wan, B. Y. J. Phys. Chem. C 2010, 114, 14849-14853.
(24) Pinkas, J.; Reichlova, V.; Serafimidisova, A.; Moravec, Z.; Zboril, R.; Jancik, D.; Bezdicka, P. J. Phys. Chem. C 2010, 114, 13557-13564.
(25) Zhang, R. Z.; Dai, H. X.; Du, Y. C.; Zhang, L.; Deng, J. G.; Xia, Y. S.; Zhao, Z. X.; Meng, X.; Liu, Y. X. Inorg. Chem. 2011, 50, 2534-2544.
(26) Wei, X.; Xu, G.; Ren, Z. H.; Xu, C. X.; Weng, W. J.; Shen, G.; Han, G. R. J. Am. Chem. Soc. 2010, 93, 1297-1305.
(27) Hu, Z. A.; Xie, Y. L.; Wang, Y. X.; Mo, L. P.; Yang, Y. Y.; Zhang, Z. Y. Mater. Chem. Phys. 2009, 114, 990-995.
(28) Bhattacharyya, S.; Gabashvili, A.; Perkas, N.; Gedanken, A. J. Phys. Chem. C 2007, 111, 11161-11167.
(29) Seayad, A. M.; Antonelli, D. M. Adv. Mater. 2004, 16, 765-777.
(30) Zhang, W.; Shi, J.; Chen, H.; Hua, Z.; Yan, D. Chem. Mater. 2001, 13, 648-654.
(31) Li, L.; Shi, J. L.; Zhang, L. X.; Xiong, L. M.; Yan, J. N. Adv. Mater. 2004, 16, 1079-1082.
(32) Nara, H.; Fukuhara, Y.; Takai, A.; Komatsu, M.; Mukaibo, H.; Yamauchi, Y.; Momma, T.; Kuroda, K.; Osaka, T. Chem. Lett. 2008, 37, 142-143.
(33) Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L.; Liu, J.; Pope, M. A.; Aksay, I. A. ACS Nano 2010, 4, 1587-1595.
(34) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169-172.


[^0]:    Received: July 6, 2011

